On Subcartesian Spaces Leibniz’ Rule Implies the Chain Rule
نویسندگان
چکیده
منابع مشابه
survey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولTaming the Leibniz Rule on the Lattice
We study a product rule and a difference operator equipped with Leibniz rule in a general framework of lattice field theory. It is shown that the difference operator can be determined by the product rule and some initial data through the Leibniz rule. This observation leads to a no-go theorem that it is impossible to construct any difference operator and product rule on a lattice with the prope...
متن کاملProduct Rule and Chain Rule Estimates for Fractional Derivatives on Spaces that satisfy the Doubling Condition
The purpose of this paper is to prove some classical estimates for fractional derivatives of functions defined on a Coifman-Weiss space of homogeneous type. In particular the Product Rule and Chain Rule estimates in [KP] and [CW]. The fractional calculus of M. Riesz was extended to these spaces in [GSV]. Our main tools are fractional difference quotients and the square fractional derivative of ...
متن کاملSupersymmetry on the lattice and the Leibniz rule
The major obstacle to a supersymmetric theory on the lattice is the failure of the Leibniz rule. We analyze this issue by using the Wess-Zumino model and a general Ginsparg-Wilson operator, which is local and free of species doublers. We point out that the Leibniz rule could be maintained on the lattice if the generic momentum kμ carried by any field variable satisfies |akμ| < δ in the limit a ...
متن کاملOn Transport Equations and the Chain Rule
We give some extensions of the classical chain rule rg(u)] = g 0 (u)ru and of the chain rule for transport operators a rg(u)] = g 0 (u) a ru, a 2 W 1;1 , via an inverse Sard lemma. Coeecients a of bounded variation are also treated in the case of a Vlasov operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 2019
ISSN: 0008-4395,1496-4287
DOI: 10.4153/s0008439519000407